My last article, “The Obama Fast Track for HEVs” graphically highlighted some critical cost issues that I’ve been writing about for several months and was surprisingly popular with readers. After responding to numerous comments and considering the gaps in that article, I believe a follow-on article is appropriate to provide additional color, put a finer point on the differences between advanced lead-acid and lithium-ion batteries and try to relate those differences to the rapidly evolving HEV markets.
As I explained last week and in a November 2008 article titled “Alternative Energy Storage; Lithium, Lead or Both?” micro hybrid, mild hybrid and full hybrid vehicles (HEVs) are classified as “power applications.” They use relatively small battery packs to:
- Stop and start the internal combustion engine (ICE) when the vehicle stops and starts;
- Provide moderate amounts of power to launch the vehicle from a stop and improve acceleration;
- Recover all or part of the energy that is normally lost in braking to recharge the batteries; and
- Power accessories like heat and air conditioning while the ICE is off.
Micro, mild and full hybrids need a battery pack that can accept a fast charge over a brief braking interval, deliver that stored electricity over a brief acceleration interval and repeat the process hundreds of thousands of times over the life of the vehicle.
In comparison, plug-in hybrids (PHEVs) are classified as “energy applications.” They use much larger battery packs to:
- Power the vehicle in electric-only mode for a distance of 10 to 40 miles before starting the ICE;
- Recover all or part of the energy that is normally lost in braking to recharge the batteries;
- Stop and start the ICE when the vehicle stops and starts; and
- Power accessories like heat and air conditioning while the ICE is off.
Since power is rarely an issue in larger battery packs, the critical requirement for PHEVs is a battery pack that can deliver substantially all of its stored energy over the time required to drive 10 to 40 miles and repeat that process once or twice a day for the life of the vehicle.
Weight and Volume
Most people find that battery comparisons based on energy densities are confusing because they use metric measurement terms and do not provide a meaningful context for the raw numbers. The following table is my effort to re-state the most common energy density values in familiar weight and volume terms. My goal is to show what energy density actually means to the owner of an HEV. For purposes of the table, I used energy densities of 30 Wh/kg and 50 Wh/l for advanced lead-acid batteries and 100 Wh/kg and 150 Wh/l for lithium-ion batteries as my starting point. I then did the necessary conversions and calculated the weight and volume advantage of lithium-ion batteries for each of the principal HEV configurations.
Fuel | Battery | Li-ion Weight | Li-ion Volume | |
Savings | Capacity | Advantage | Advantage | |
Micro Hybrid | 10% | 0.50 kWh |
26 Pounds |
0.2 Cubic Feet |
Mild Hybrid |
20% | 1.00 kWh |
51 Pounds | 0.5 Cubic Feet |
Full Hybrid | 40% | 1.50 kWh |
77 Pounds |
0.7 Cubic Feet |
PHEV-10 | 55% | 5.00 kWh |
257 Pounds |
2.4 Cubic Feet |
PHEV-40 | 100% | 16.00 kWh |
821 Pounds |
7.5 Cubic Feet |
For reference, a subcompact will typically weigh 3,000 pounds and have 10 to 12 cubic feet of trunk space.
Battery Cost
In a July 2008 report on its Solar Energy Grid Integration Systems – Energy Storage (SEGIS-ES) program, Sandia National Laboratories estimated the current cost of advanced lead-acid batteries at $500 per kWh and the current cost of lithium-ion batteries at $1,333 per kWh. I’m aware of PR claims and forward looking statements that suggest lithium-ion battery costs may be lower, but I’ve not been able to confirm lower prices based on published price lists from first tier manufacturers or quantify the meaning of terms like significant and substantial. So while I’m not entirely comfortable that the Sandia values are right, I’ve not been able to find other numbers that I think are better. The following table compares the estimated cost of using advanced lead-acid and lithium-ion batteries in each of the principal HEV configurations.
Battery | Li-ion | Advanced |
Federal | Advanced |
|
Capacity | Battery | Lead-acid Battery | Tax |
Lead-acid Battery |
|
(kWh) | Cost | Cost | Credits | Cost Advantage | |
Micro Hybrid | 0.50 | $667 |
$250 |
$417 | |
Mild Hybrid |
1.00 | $1,333 |
$500 |
$833 | |
Full Hybrid | 1.50 | $2,000 |
$750 |
$1,250 | |
PHEV-10 | 5.00 | $6,665 |
$2,500 |
($2,500) | $4,165 |
PHEV-40 | 16.00 | $21,328 |
$8,000 |
($7,500) | $13,328 |
Total Vehicle Cost
For most American comsumers, I believe the most important number will be the incremental cost of an HEV over a comparable car with an ICE powertrain. The following table compares the estimated cost premium for each of the principal HEV configurations using advanced lead-acid and lithium-ion batteries.
Fuel Savings |
Basic ICE Vehicle Cost |
HEV Premium Using Advanced Lead-acid Batteries |
HEV Premium Using Li-ion Batteries |
|
Micro-Hybrid | 10% | $18,000 |
$750 |
$1,167 |
Mild-Hybrid |
20% | $18,000 |
$1,500 |
$2,333 |
Full-Hybrid | 40% | $18,000 |
$2,250 |
$3,500 |
PHEV-10 | 55% | $18,000 |
$2,000 |
$6,165 |
PHEV-40 | 100% | $18,000 |
$2,500 |
$15,828 |
The following graph summarizes the same basic information in a slightly different format.
Market Forecast
Global market forecasts for HEVs vary widely and are evolving rapidly in response to new laws and regulations. In an October 2008 AW Briefing on “The Global Oil Paradox: Transforming the Automotive Industry,” Anil Valsan of Frost & Sullivan presented a slideshow that included two highly informative graphs.
The first graph showed three growth scenarios for the global HEV market. At the time, the biggest unknown was the automobile industry’s response to EU legislation that requires manufacturers to reduce average CO2 emissions from the current level of 160 g/km to 120 g/km by 2012. Eight months later, it’s clear that the industry response has been a concerted effort to standardize micro and mild hybrid technologies throughout Europe. As I noted last week, the Obama administration has recently decided to accelerate CAFE standards by five years. That change can only serve to increase the rate of standardization for micro and mild hybrid technologies. Under current conditions, it looks like Frost & Sullivan’s “optimistic” view from last October will probably fall well short of the emerging reality.
The second graph showed Frost & Sullivan’s forecast of HEV sales through 2015 and confirmed my oft repeated argument that cars with plugs will not be a material segment of the HEV market for the foreseeable future and the major business opportunity is in micro, mild and full HEVs.
In combination, the regulatory changes from Brussels and Washington DC have fundamentally altered market dynamics in the HEV sector and increased the critical importance of five facts.
- 1. Aggressive CO2 emission standards will increase the rate of HEV standardization in the EU;
2. Acceleration of CAFE standards will increase the rate of HEV standardization in the US;
3. The EU standards will be implemented before most proposed lithium-ion battery plants can be built;
4. Since adequate supplies of lithium-ion batteries will not be available during the 2009 to 2012 EU phase-in window, most major automobile manufacturers will turn to advanced lead-acid batteries for a substantial portion of their micro, mild and full hybrid product lines; and
5. Once advanced lead-acid batteries earn the first mover advantage in Europe, it will be very difficult, if not impossible, for lithium-ion batteries to overcome an entrenched and cheaper alternative.
I have consistently argued that budget conscious consumers would prefer cheap lead-acid batteries to smal
ler, lighter and more expensive lithium-ion batteries, particularly for HEV applications. The timing of the new EU regulations has put automakers in a position where they can’t afford to wait for “the battery of tomorrow.” Instead they have to go to work immediately and meet the CO2 emission standards with batteries they can buy today from established manufacturers. Under those circumstances, I’m convinced that advanced lead-acid batteries will dominate the HEV markets until a clearly superior battery technology is developed.
The market dynamic may change over the long-term if PHEVs become a dominant hybrid configuration. It may also be impacted by future changes in the relative price advantage of advanced lead-acid batteries. For the foreseeable future, however, I believe the lion’s share of the revenue gains from the HEV revolution will flow to companies like Johnson Controls (JCI), Enersys (ENS), Exide (XIDE) and C&D Technologies (CHP) that have substantial existing manufacturing capacity in both Europe and the US, and from technology driven newcomers like Axion Power International (AXPW.OB) that can rapidly and inexpensively expand their production capacity to satisfy soaring demand from the HEV market.
DISCLOSURE: Author is a former director and executive officer of Axion Power International (AXPW.OB) and holds a large long position in its stock. He also holds small long positions in Exide (XIDE) and Enersys (ENS).
John L. Petersen, Esq. is a U.S. lawyer based in Switzerland who works as a partner in the law firm of Fefer Petersen & Cie and represents North American, European and Asian clients, principally in the energy and alternative energy sectors. His international practice is limited to corporate securities and small company finance, where he focuses on guiding small growth-oriented companies through the corporate finance process, beginning with seed stage private placements, continuing through growth stage private financing and concluding with a reverse merger or public offering. Mr. Petersen is a 1979 graduate of the Notre Dame Law School and a 1976 graduate of Arizona State University. He was admitted to the Texas Bar Association in 1980 and licensed to practice as a CPA in 1981. From January 2004 through January 2008, he was securities counsel for and a director of Axion Power International, Inc. a small public company involved in advanced lead-carbon battery research and development.
I just got the following e-mail from a man of obvious taste (as are all Irish fans) and thought I’d share it, together with my response.
I love your newsletter and your analytical approach to energy companies. I find your analyses much more compelling and thought-provoking that reports costing thousands of dollars!
The purpose of this email, however, is to point out that your lithium ion energy density assumptions are significantly lower than product being shipped today by some of the smaller, more advanced companies, such as EIG in Korea (www.eigbattery.com ), who focuses on providing lithium ion battery cells and packs to the suppliers of fleet trucks. EIG and others have published specs and are shipping products ranging from 240 Wh/l for Lithium Iron Phosphate to 365 Wh/l for Lithium Cobalt.
Furthermore, as a consultant in the industry, I happen to know that there are many quotes (@ volume production) to tier-one and tier-two transportation suppliers for LIB costs much much less than $750kWh, complete with BMS.
Go Irish!
Tim
RESPONSE:
Dear Tim,
Thank you so much for taking the time to comment on my work and offer suggestions about how I could improve it. These issues really are important to me and I try to take the time to do it right whenever possible. I think the bum estimate on volumetric energy density is probably not critical in the context of this particular article because even if we brought li-ion down to 1% of lead-acid volume, the savings in cubic feet would not be significant to a normal driver until you get into the PHEV-10 range. But it reinforces my conviction that li-ion is the only way to go for applications with suitably low vehicle weight to passenger weight ratios.
The two big problems I face in blogging are (1) a lack of reliable independent data which is why I rely heavily on government reports, and (2) a need to focus my analysis on public companies that normal people can invest in today. So while I do plumb some depths on fairly technical issues, my real goal is to make readers better investors without having their eyes glaze over from too much detail.
I am aware that many companies, particularly Asian companies, are selling products for prices that are less than the DOE numbers. My biggest problem with the Asian companies is I don’t view them as reliable long term suppliers because the time will come when home country demand increases to a point where somebody gets told no. When that day arrives, I’m convinced that we’ll see the same thing in li-ion chemistry that we saw with lead-acid. Home country sales will take priority and exports will plummet.
Even in the US company space we have Valence which is selling Li-FeP04 in pack form at $1,000. The problem is that Valence is not making any gross profit on those sales and its price with a normal 1/4 gross margin would be right back at $1,333.
You may not be able to help me but if you ever come across public reports that I’ve missed (particularly government reports), I would dearly love a heads-up. There are way too many people who want to talk about “what will be” instead of “what is.” If I’m thinking as investor, it is critically important to know both where we are and where we are going.
For right now, I’m waiting with bated breath for a new report on li-ion battery costs that Argonne is supposed to publish next month. I don’t mind being forward-looking and even optimistic, as long as I can tie my optimism back to specific facts and figures.
Joe, I’ve been watching nickel zinc and agree that it’s a technology with considerable promise, but as a financial blogger I try to limit my discussions of companies that people can invest in today. Given the number of VC types on your board of directors I suspect that Powergenix may be in that class sooner rather than later.
I will be in San Diego from the 13th through the 16th of July for Infocast’s Storage Week where I’m appearing on three panels. If you would like to get together in person I’m sure we can work something out. My contact information is available on our website at http://www.ipo-law.com